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Abstract 

Today’s massively parallel machines are typically message-passing systems consisting 

of hundreds or thousands of processors. Implementing parallel applications efficiently in 

this environment is a challenging task, and poor parallel design decisions can be expensive 

to correct. Tools and techniques that allow the fast and accurate evaluation of differ- 

ent parallelization strategies would significantly improve the productivity of application 

developers and increase throughput on pardel architectures. 

This paper investigates one of the major issues in building tools to compare paral- 

lelization strategies: determining what type of performance models of the application code 

and of the computer system are sufficient for a fast and accurate comparison of different 

strategies. The paper is built around a case study employing the Performance Prediction 

Tool (PerPreT) to predict performance of the Parallel Spectral Transform Shallow Water 

Model code (PSTSWM) on the Intel Paragon. 

PSTSWM is a parallel application code that was designed to evaluate different par- 

d e l  strategies for the spectral transform method as it is used in climate modeling and 

weather forecasting. Multiple parallel algorithms and algorithm variants are embedded in 

the code. PerPreT uses a relatively simple algebraic model to predict execution time for 

SPMD (Single Program Multiple Data) parallel applications. Applications are modeled 

through parameterized formulae for communication and computation, where the parame- 

ters include the problem size, the number of processors used to execute the program, and 

system characteristics (e+, setup times for communication, link bandwidth, and sustained 

computing performance per processor). 

In this paper we describe performance models that predict the performance of the 

different algorithms in PSTSWM accurately enough to allow them to be compared, es- 

tablishing the feasibility of such a demanding application of performance modeling. We 

also discuss issues in generating and validating the performance models, emphasizing the 

practical importance of tools such as PerPreT in such studies. 





1. Introduction 

Advances in microprocessor technology and interconnection networks have made it possible 

to construct parallel systems with a large number of processors (e.g., Cray Research T3D, 

IBM SP2, Intel Paragon, workstation networks running PVM). Unfortunately, the application 

programs developed for conventional sequential systems or for pipelined supercomputers do not 

automatically run efficiently on these systems. There are few tools to support the development 

of parallel programs, and the performance of parallel programs is strongly dependent on the 

parallel programming skills of the application developer. 

Before writing a program, the developer must identify a parallelization strategy. In most 

cases there are many options for distributing the data and tasks onto the processors. These 

options often have widely varying performance characteristics that are functions of numerous 

system and program parameters, and it can be difficult to predict a priori which options are 

best. Accurate prediction of the performance trade-offs of alternative strategies and of how 

the performance will change as program parameters change would greatly benefit program 

developers. 

As an example, several parallelization strategies have been proposed for global atmospheric 

circulation models that use the spectral transform numerical technique [15]. These codes have 

strict performance requirements, being used for weather forecasts or for long term climate 

simulations, and even small improvements in performance can be significant. Researchers have 

demonstrated empirically the performanceof one or two strategies [3], [7], [14], [18], [23], [26], or 

have made qualitative or asymptotic comparisons between strategies using simple performance 

models [5], [6], [13], but this work only establishes the feasibility of the different approaches. 

To accurately compare the different strategies, researchers at Argonne National Laboratory 

and Oak Ridge National Laboratory developed the Parallel Spectral Transform Shallow Wa- 

ter Model (PSTSWM). Multiple parallel algorithms and algorithm variants are embedded in 

PSTSWM, allowing good algorithms to be identified from empirical studies. The results of the 

studies using PSTSWM have been extremely useful; however, PSTSWM took over two years 

to develop and the experiments required to identify the best algorithms are time consuming. 

We hope that performance models would be simpler to adapt to proposed changes in the ap- 

plication codes and could be used to quickly examine the effect of running on new machines or 

with different problem or machine parameters. 

Several approaches for the modeling of parallel systems have been presented that use Markov 

models or Petri nets [12], [21], [22]. Unfortunately, it is difficult to apply these approaches to 

massively parallel systems: 

- The graphical representation required by these approaches is very complex for systems 

with hundreds or thousands of processors. 
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- The parallel application description required is very detailed. 

- The resulting systems of equations defining the models are large and expensive to solve. 

Applications for massively parallel systems typically use the single program multiple data 

(SPMD) prograniming model and are loosely synchronous [a]. For such programs, simpler 

modeling techniques utiIizing algebraic abstractions of the application and computer system 

can often be used without a significant loss of accuracy [l]. These techniques make it feasible 

to model architectures with thousands of processors and the resulting models can be evaluated 

quickly. 

Recent research utilizing algebraic performance models includes [4], [17], and [19]. These 

papers focus on tools or methodologies, many of them language or system specific, that auto- 

matically generate performance models from source code and user input. The paper by Sarukkai 

et. al. [19] on a methodology and toolkit for the scalability analysis of message-passing parallel 

programs has similarities with our research, but our concerns are somewhat different. We are 

primarily interested in investigating the accuracy of algebraic performance models. We want to 

identify what types of models can be used when modeling full application codes in the context 

of comparing parallelization strategies. In earlier work we found that the different phases of a 

parallel code place both implementation and Performance constraints on each other, and that 

evaluation of kernels in isolation can be misleading, especially in a prototyping environment. 

We feel that it is still an open question as to how to model full application codes. How complex 

must a model be to be sufficiently accurate? How can a model be validated and the model 

accuracy determined? How does the accuracy of a model “scale” with the number of processors, 

problem size, and other program and system parameters? The comparison of parallelization 

strategies is also an interesting application of modeling. It is a strict test in that it requires 

multiple accurate models, but also requires only relative accuracy. The goal is “fairness” in the 

models for the different strategies. 

In this paper we show that a reasonably accurate prediction of performance measures is 

possible without requiring detailed application and system characterizations. We describe a 

case study employing algebraic models to predict the performance of the Parallel Spectral 

Transform Shallow Water Model code (PSTSWM) on the Intel Paragon. We use these models 

to determine which parallel algorithm options are optimal for a given problem size and number 

of processors. We determine the error in our predictions empirically. We concentrate on 

the feasibility of such an approach for comparing parallelization strategies We do not address 

directly how to generate accurate models before the application code has been written, but the 

results do provide guidance on how accurate the models need to be. 

This research was possible only because of the prior existence of a number of tools: PSTSWM, 

PICL, and PerPreT. PSTSWM is a convenient testbed for such studies. PICL (Portable Instru- 



Application desc. PerPreT 

Parameters: 

- problem size 

communication library Input 
Input 

PerPreT 

Formulae for. 
- communication 
- computation 

Analytieal model with parameters h+ 

System description 

Parameters: 
- setup time for send 
- bandwidth mem->buf 
- bandwidth links 
- setup time for receive 
- bandwidth buf->mem 
- mp protocol 
- network type 
- sustained MFLDP/s 

Figure 1: PerPreT Modules 

mented Communication Library) was used to collect the performance data needed to construct 

and to validate the performance models [9], [27]. PerPreT (Performance Prediction Tool) was 

used to define and evaluate the performance models [l]. All three tools are available via the 

World Wide Web from the following locations: 

- PerPreT: http://uvw.irb.uni-hannover.def-brehm/publications 

PICL: http://www.epm.ornl.gov/picl 

PSTSWM: http: //urn. epm. o rn l .  gov/chammp/pstsmm 

The remainder of this paper is organized as follows. $2 is a description of how to use 

the performance prediction tool PerPreT. $3 is a brief description of the Intel Paragon. $4 
is a description of the PSTSWM code and of the different parallelization strategies. $5 is a 

description of the parameterized PerPreT formulae for PSTSWM. 56 is a description of the 

modeling experiments and an analysis of the results. $7 is a discussion of our conclusions and 

some ideas for future work. 

2. PerPreT 

2.1. Overview 

The high-level modules of PerPreT (Le., application description, system description, communi- 

cation library, analytical model) are outlined in Fig. 1. PerPreT uses parameterized system and 

application descriptions. Both the system and application descriptions are split into parameter- 

ized communication and computation descriptions. The system and application descriptions are 

kept independent of each other. Thus, applications are modeled on different systems without 

the need of defining new application descriptions. 
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An SPMD application is reduced to formulae for computation (number of arithmetic state- 

ments) and communication (calls to the communication library). The problem size for an 

application and the number of processors used to execute the SPMD program are free parame- 

ters. For modeling complex codes such as PSTSWM, PerPreT supports splitting the code into 

different computation phases according to their performance behavior. If extra operations for 

parallel computing are necessary (e.g., copy operations to prepare for communication), such 

extra phases can also be modeled with their performance characteristics. 

PerPreT uses the system description parameters in Fig. 1 and a communication library to 

model the communication and computation behavior of the target architecture. The sustained 

MFlop/s (millions of floating point operations per second) rates and the rates used for extra 

phases (e-g., copy rates) are the only system variables that sometimes change with different 

applications or with different phases of a single application. More details on PerPreT can be 

found in [l] . 

2.2. Application description 

In many massively parallel systems, each processor has direct access only to its own local 

memory. The communication between different processors is realized using message passing. 

Even on parallel architectures that directly support a global address space, message passing 

is a popular program.ming paradigm, both for portability and for efficiency. (Message passing 

is often efficient because it is a convenient “discipline” for dealing with the nonuniform access 

behavior inherent in any scalable memory system.) 

Code for massively parallel systems is written primarily using the SPMD programming 

model. In this model the same code is loaded on all execution units to perform the same or 

similar tasks on different sets of data. Synchronization and communication for the tasks are 

done at the user level. At the system level, each processor executes its own code. Because 

of data dependencies, the various tasks of an SPMD program may have to communicate dur- 

ing execution. When using hundreds or thousands of processors, the parallel codes must be 

fairly regular and well structured to avoid load balancing problems and remain deadlock free. 

Often, the codes have alternating phases of communication and computation or, at least, d i s  

tinct phases containing both communication and computation that are separated by logical 

synchronization points. 

In Fig. 2, an example SPMD program is outlined as a task graph. The circles represent the 

computational tasks and the arrows represent communication between tasks. A computation 

phase does not Iast longer than TCP; time units (i=1,2,..,7) and a communication phase does 

not last longer than TCMj time units (j=1,2,..,6). The assumption is that TCPi and TCMj are 

the maximum times for all tasks at levels i and j ,  respectively. In Fig. 3, a possible mapping 
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Figure 2: SPMD Program Task Graph 

Figure 3: Mapping of an SPMD program on 6 processors 
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of the tasks onto processors (Pl,..,P6) is shown. The estimated communication time of this 

mapping is: 

j 

The estimated computation time is: 

C T C P ;  
i 

The total estimated execution time is: 

If there is tight synchronization between phases, the measured execution time will be very 

close to these estimates. However, many SPMD codes are only loosely synchronous, where 

synchronization between phases is enforced only by the natural data dependencies and by the 

explicit message passing used to satisfy these dependencies. For these codes, not all processors 

necessarily execute the same phase at the same time. If load imbalances at each phase are not 

all assigned to the same processors, then the use of maximum phase costs cause an overestimate 

of the total execution time. Such behavior can also be modeled in PerPreT, at the cost of more 

complexity in the models. In our experience and in the experiments described in this paper, 

the simple maximum phase cost model is sufficiently accurate, and is used exclusively in this 

paper. 

For more general task graphs the number of subtasks per level, and thus the number of 

arrows per level, is not necessarily constant. Data parallelism often results in one subtask 

per processor for some of the levels, and the number of processors is a natural parameter 

in the communication and computation models. The problem size is the second parameter 

used. Clearly, the times TCP; (determined by the number of statements to be executed) and 

TCMj (determined by the message length) depend on these parameters, but the formulae for 

communication (1) and computation (2) are valid independent of the number of processors and 

the problem size. 

2.3. System description 

Communication. In most existing message-passing systems, the time required for each 

point-tepoint communication request can be divided into the five phases outlined in Fig. 4. 

Depending on the message-passing protocol, one or more of the phases may or may not exist. For 

instance, transputers use synchronous message passing where the messages are copied directly 

from the user space on one processor to the user space on another processor. In this case it 
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Processor 1 

Processor2 

T1: Send setup time. This time is needed for communication between the sender’s commu- 
nication unit and the sender’s user process to initialize message buffers and to transfer 
control of the transmission to the communication unit. 

T2: Send copy time. In the case of an asynchronous message-passing protocol, the outgoing 
message is often copied to a buffer controlled by the communication unit. 

T3: Message transmission time. This time is required to  copy the message from the sender’s 
communication unit to the receiver’s communication unit. 

T4: Receive setup time. This time is needed for communication between the receiver’s user 
process and the receiver’s communication unit. The receiver’s user process is informed 
about the location of the message. 

T5: Receive copy time. In the case of an asynchronous messagepassing protocol, the incom- 
ing message is often copied from a buffer controlled by the communication unit to the 
receiver’s process space. 

Figure 4: Message-Passing Communication 
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is not necessary to copy the messages from user space to the communication buffer and vice 

versa. The PerPreT approach is general enough to model a wide variety of existing message- 

passing protocols. The time for communication in a message-passing system normally follows 

the simple formula: Tc = Tl+T2+T3+T4+T5 where Tc is the communication time. Some 

of the phases (e.g., T2, T3, T5) depend on the message size. If a complete system specification 

is available, these times can be used by the PerPreT communication library routines directly. 

However, users often do not have access to a detailed specification. The vendor provided times 

tend to be “optimistic”, reporting best case times. These reported times may also be invalid 

if third party or other nonnative communication routines are used. For instance, if a program 

uses a portable communication library such as MPICH [lo] or PICL [9], the times are slightly 

higher because of the overhead of an additional software layer. The PICL message-passing calls 

were used for this work, and the times Tl,..,T5 were determined by experimentation [20]. These 

times are used as input parameters for the routines of the PerPreT communication library. 

Computation. The computational behavior measured in MFlop/s of a single processor in 

a multiprocessor often shows a wide variation for different programs. Thus the performance 

of the processor for the given program has to be determined in order to predict the execution 

time of a program accurately. When the sequential or parallel code is available, PerPreT users 

preferably run the code on one or a small number of processors and calculate the sustained 

MFlop/s rate. If the code for an application is not available the PerPreT user has several 

choices: 

0 look at similar codes and take their performance characteristics; 

0 implement a small kernel to simulate the code; 

e look at beiichmarks that characterize the performance of the underlying hardware and 

system software. 

In the case of PSTSWM the code was split into several compute and copy phases. The 

performance rate for each of these phases was determined from a set of runs of the program 

on eight processors, as described in 55.2. The assumption is that these values will prove to be 

accurate enough for experiments when more than eight processors are used. The validity of 

this assumption is examined in $6.  

3. Intel Paragon 

The Paragon XP/S M P  system is a distributed memory multiprocessor in which the  de^'' 

are connected via a two-dimensional mesh interconnection network. Each node in the mesh 
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consists of three processors, two of which are dedicated to computation while the third is 

normally dedicated to communication. The communication processor is responsible for handling 

the messages generated by the node and the messages passing through the node. Processors 

and memory in a node are interconnected by a 400 MB/sec bus, and each link in the node 

interconnection network has a peak unidirectional bandwidth of 200 MB/sec. 

There are three types of nodes - service, compute, and I/O. The service nodes host appli- 

cation control processes, compute nodes are assigned to parallel applications and dedicated to 

computations, and the 1/0 nodes provide the interface between the machine and RAID disks. 

The node interconnection network uses wormhole routing. The messages travel in the horizon- 

tal direction first and then in the vertical direction. Due to wormhole routing, communication 

latency is effectively distance independent. 

The XP/S 150 MP at Oak Ridge National Laboratory consists of 1024 compute nodes in 

a 16 row by 64 column rectangular mesh. Each processor is a 50MHz i86OXP, and all of the 

nodes have at least 64MB of “local” memory. In addition, there are 5 service nodes and 127 

1/0 nodes, each connected to a 4.8 GB RAID disk. At the time of these experiments, the 

system software was release 1.3 of OSF. 

In our experiments, of the three processors in a compute node, one was used for computation, 

one was used for communication, and one was left idle. Using the second computation processor 

did not improve performance for PSTSWM due to the nature of the memory accesses. For the 

rest of the paper we will refer to a node in the XP/S 150 as a processor. 

4. P§TSWM 

PSTSWM is a message-passing parallel program that solves the nonlinear shallow water equa- 

tions on a rotating sphere using the spectral transform method. PSTSWM is written in For- 

tran 7’9 with VMS extensions and a small number of C preprocessor directives. Message passing 

is implemented using MPI [16], PICL [9], PVM [$I, or native messagepassing libraries, with 

the choice being made at compile time. Optional performance instrumentation is implemented 

using the PICL trace and profile collection interface. PICL was used in the work described 

here, to collect performance data, but PICL simply represents a thin layer over the native NX 

message passing on the Intel Paragon. 

The shallow water equations in the form solved by the spectral transform method describe 

the time evolution of three state variables: vorticity, divergence, and a perturbation from an 

average geopotential. The velocities are computed from these variables. PSTSWM advances 

the solution fields in a sequence of timesteps. During each timestep, the state variables of the 

problem are transformed between the physical domain, where the physical forces are calculated, 

and the spectral domain, where the terms of the differential equation are evaluated. The 



- 10-  

1) Evaluate non-linear product and forcing terms. 

2) Compute forward Fourier transform of non-linear terms. 

3) Compute forward Legendre transforms. 

4) Advance in time the spectral coefficients for the state variables. 

5) Evaluate sums of spectral harmonics, simultaneously calculating the horizontal ve- 

6 )  Compute inverse Fourier transform of state variables and velocities. 

locities from the updated state variables. 

Figure 5: Outline of a single timestep of PSTSWM. 

physical domain for a given vertical level is a tensor product longitude-latitude grid. The 

spectral domain for a given vertical level is the set of spectral coefficients in a truncated spherical 

harmonic expansion of the state variables. 

Transforming from physical coordinates to spectral coordinates involves performing a real 

fast Fourier transform (FFT) for each line of constant latitude, followed by integration over 

latitude using Gaussian quadrature (approximating the Legendre transform (LT)) to obtain the 

spectral coefficients. The inverse transformation involves evaluating sums of spectral harmonics 

and inverse real FFTs. The basic outline of each timestep is described in Fig. 5. For more details 

on the steps in solving the shallow water equations using the spectral transform algorithm 

see [ll]. 

The parallel algorithms in PSTSWM are based on decompositions of the physical and spec- 

tral computational domains over a logical two-dimensional processor mesh of size PX x PY. 

Initially, the longitude dimension of the physical domain is decomposed over the processor 

mesh row dimension and the latitude dimension is decomposed over the column dimension. 

Thus, FFTs in different processor rows are independent, and each row of PX processors col- 

laborates in computing a “block” of E’FTs. Similarly, the Legendre transforms in different 

processor columns are independent, and each column of PY processors collaborates in com- 

puting a “block” of Legendre transforms. The computation of the nonlinear terms at a given 

location on the physical grid is independent of that at other locations. The spectral domain 

decomposition is a function of the parallel algorithm used. In this version of PSTSWM, all 

computations on the spectral “grid” are likewise independent. Parallel efficiency is determined 

solely by the efficiency of the parallel algorithms used for the FFT and LT transforms and by 

any load imbalances caused by the choice of domain decomposition. 

Two classes of parallel algorithms are available for each transform: distributed algorithms, 

using a fixed data decomposition and computing results where they are assigned, and trans- 

pose algorithms, remapping the domains to allow the transforms to be calculated sequentially. 

These represent four classes of parallel algorithms: distributed FFT/distributed LT, transpose 
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DH: 
D R  
DT: 

FFT/distributed LT, distributed FFT/transpose LT, and transpose FFT/transpose LT. 

PSTSWM provides many parallel algorithms for each of the parallel algorithm classes [%I. 
In these experiments, we restrict ourselves to one transpose algorithm (for both FFT and LT), 

one distributed FFT algorithm, and two distributed LT algorithms, comprising the best parallel 

algorithms on the Intel Paragon. These algorithms are briefly described below. 

distributed FFT / @(log 9)-step distributed LT 
distributed FFT / O(Q)-step distributed LT 

distributed FFT / transpose LT 

Transpose. Assume that the transpose algorithm involves Q processors and that each 

processor contains D data to be transposed. Then every processor sends approximately 

D/Q data to every other processor, for a total of O(Q) messages and a total per processor 

volume of 8 (D) . 

TH: 
TR: 
TT: 

Distributed FFT. Assume that the distributed FFT algorithm involves Q processors 

and that each processor contains D data to be transfomed. Then each processor exchanges 

0 / 2  data with its neighbors in a logical (log, 9)-dimensional hypercube, for a total of 

0(log &) messages and a total per processor volume of O ( D  log Q). 

transpose FFT / 0(log Q)-step-distributed LT 
transpose FFT / @(&)-step distributed LT 

transpose FFT / transpose LT 
- 

Distributed LT. Assume that the Legendre transform is parallelized over & processors 

and that each processor will contain D spectral coefficients when the transform is com- 

plete. Then the per processor communication costs for the two distributed LT algorithms 

can be characterized by 

- 

- S(Q) messages, O(DQ) total volume 

- @(logQ) messages, O(DQ) total volume 

respectively. The O(Q)-step algorithm works on a logical ring, each processor communi- 

cating only with its two neighbors. The @(log&)-step algorithm uses the same commu- 

nication pattern as the distributed FFT algorithm. 

These parallel algorithms for the FFT and LT generate the six parallel algorithms for the 

spectral transform method listed in Tab. 1. There are many implementation variants possible for 

Table 1: Candidate PSTSWM parallel algorithms 

each of these algorithms, distinguished, for example, by the choice of communication protocol 
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and the mapping of logical processors to physical processors. For these experiments, we use 

those implementations that have proven most efficient on the Intel Paragon. For details on the 

different implementation options, see [as]. 
PSTSWM is an interesting case study in modeling for many reasons. It has numerous dis- 

tinct phases, each with its own computation and communication rates and patterns. It has 

(static) load imbalances that change with the choice of parallel algorithm and logical proces- 

sor mesh. It requires significant global communication during each timestep, divided into two 

collective operations that access the processors in different ways. Finally, PSTSWM is a r e p  

resentative member of an important class of simulation models. In these studies, our goal is to 

build models that are accurate enough to indicate which parallel algorithm is most efficient for 

a given problem size and number of processors on a given multiprocessor. 

5 .  Modeling PSTSWM 

Assume that communication costs are negligible or scale linearly with the computation costs. 

Assume further that the computation rate varies in the same way across all algorithms as a 

function of the number of processors and of the problem size. Then a simple computational 

complexity analysis is sufficient to choose between the alternative parallel algorithms. If these 

assumptions do not hold or if runtime estimates are also needed, then we must determine both 

the computation and communication costs for a range of numbers of processors and of problem 

sizes. 

In earlier research, we showed that different logical phases of a code may need to be modeled 

individually [25]. Each phase has its own Computation rate, depending on the amount of 

computation and the amount and pattern of memory accesses. As the number of processors 

and problem size change, the percentage of time spent in each phase changes. This changes 

the overall computation rate. In the following, we identify and construct models for important 

phases. For brevity, we present only the phase models for algorithm TH. Models for the other 

parallel algorithms are given in Tab. 1417 in the appendix. 

5.1. Parameters 

PerPreT expects one formula for the computation and one formula for the communication 

as input. These formulae use the number of processors and the problem size as parameters. 

For PSTSWM, the problem is specifed by 8 parameters: DT, TALE, HM, NN, KK, E A T ,  "LON, 

WER, and by the specification of initial data and forcing function. The data and forcing 

function specification is fixed in these experiments and the following performance models are 
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specific to  the particular test case1, representing the calculation of solid body rotation steady 

state flow [24]. DT is the length of the timestep and TAUE is the duration of the model run 

in simulated time. Thus, TAUE/DT is the number of timesteps in the simulation. For these 

experiments the number of timesteps is fixed at 108. MM, NN, and KK determine which spectral 

coefficients are generated. We use the common choice of MM = NN = KK, which implies that 

MH + 1 Fourier coefficients are retained from the Fourier transform and (MM + 1)(HM + 2)/2 

spectral coefficients are used in the spectral representation. NLAT, NLON, and MER define the 

tensor-product physical grid of size NLON x NLAT x WVER. These values are also a function 

of when the computational complexity is minimized subject to satisfying an anti-aliasing 

condition. The number of processors used is specified by the logical processor mesh PX x PY. 

The costs associated with each phase of PSTSWM are functions of the domain decomposi- 

tion relevant to the phase. There are two decompositions of the physical domain (longitude x 

latitude x vertical levels) : 

NLLONJ, NLLATS, and NLVERJ, denoting the number of local longitudes, latitudes, and 

vertical levels assigned to a given processor during physical domain computations, 

N U O N E ,  NLLAT-F, and NLVERE, denoting the number of local longitudes, latitudes, and 

vertical levels assigned to a given processor during the Fourier transform phases, 

one decomposition of the Fourier domain (wavenumber x latitude x vertical levels): 

e NLMMS, NLLATS, and NLVHLS, denoting the number of local wavenumbers, latitudes, and 

vertical levels assigned to a given processor during the Legendre transform phases, 

and one decomposition of the spectral domain (spectral coefficients x vertical levels): 

N L S P S ,  NCSPS, and NLVI%S, denoting the number of spectral coefficients assigned to a 

single processor and to a single column of processors, respectively, during computations 

in the spectral domain. 

The values for these 11 parameters are functions of NPI, NN, KK, NLAT, NLON, NVER, PX, PY, and 

the parallel algorithm being used. The values for parallel algorithm TH are as follows: 

'Most of the other test cases differ only in calculation of the nonlinear terms, and only one phase model 
would need to be changed when changing cases. 
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The values for the other 5 algorithms are listed in Tab. 13 in the appendix. These are maximum 

values across all processes, and load imbalance enters via the floor and ceiling functions in the 

expressions. The load imbalance varies with logical grid aspect ratio and parallel algorithm, 

and between the different computational domains. 

5.2. Computa t ion  model 

PerPreT requires a simple algebraic expression for the number of arithmetic statements exe- 

cuted by each processor. If this number varies for different processors, the maximum is used. 

To implement different models for different phases, a separate algebraic expression is generated 

for each phase. The computation model for the entire program is a weighted sum of the phase 

expressions, where the weights are the computation rates associated with the different phases. 

We include phases that involve only copying. In parallel codes, copying is often a significant 

cost, For example, for the transpose-based parallel algorithms the indices of the field arrays 

must be in a different order for the transposition than for the computation. This requires an 

explicit copy before and after the communication phases. 

The following phase computation models for parallel algorithm TH were derived from the 

source code and are of two types: number of floating point computations and number of bytes 

copied. For the purposes of these experiments, we limited ourselves to (simple) models that an 

industrious application developer would be willing to generate. Some phases are interleaved in 

time even for a single timestep, and a given phase model represents the sum of all calls to the 

relevant code during one time step. Later we will examine whether this number of phases i s  

necessary or sufficient. 

The phase models come in two forms: one-parameter (single rate) and two-parameter mod- 

els. All of the phases show some performance sensitivity to problem size and aspect ratio, but 

many of the computational phases are relatively insensitive and a single rate is sufficient. (We 

examine accuracy issues in detail in $6.) The variations in the rates in Tab. 2 between different 

phases arise from different access patterns to and from memory, and from differing amounts of 

computation per memory access. 

In contrast, rates for phases with low computation to memory access ratios, like COPY phases, 

vary significantly with aspect ratio and problem size. With a few exceptions, this variation is 

approximated reasonably well with the following two-parameter model: a rate for the total 

number of operations and a rate for the number of times that the inner loop is executed. The 

form of these models was derived empirically, but one justification is that it takes into account 

the additional cost of crossing cache and page boundaries when accessing memory. 

The phases requiring two-parameter models and the rates for all models were determined 

empirically. Timings were taken from a series of 8-processor runs using two different problem 
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Phase I Model Rate 

1 I 12 . NLLONS . NLLATY * N L V E R S  4.8 

2 
3 
5 
6 
7 

9 
10 
11 

[(PX - l)/PX1 . 3 2  . NLLATY . NLK3RS . (a + b a NLLONS) 
[(PX - l)/PX] .32 . N L L A T S  . NLVERT . (a. PX + b . NLLONI) 
20 . NLLATT . NLVERE . NLLI.INT . (a + b . log2(NLLON-F/4)) 
64 . NLLATI: . NLVERT . (a + b . NLLON-F/4) 
144. NLLATT . NLVERE . (a + b . NLLONE/4) 

forward LT 
(PY - 1) * 6 . NLVERS . NCSPS/PY 
61 . NLVERS . N W S  . NLLATS 
(14 . NLLATS - 1) . NCSPS . NLVERS 

(4.5,23.1) 
(17.7,21.6) 
(3.8,24.0) 
(4.0 15.2) 
(10.4,19.8) 

4.4 
10.0 
15.1 

12 I 13 .NLSCS * NLVERS 11.5 

13 17 - NCSPS N L V E R S  
14 
17 

18 
19 
20 
21 
22 [(PX- l)/PX] . 2 0 . N L L A T F . ~ O N S . ( a - P X + b . M L V E R S )  

(14 . NCSPS + 10 . N L M H S )  . NLLATS . N L V E R S  
40 . NLLATI . NLVERE . (a + b . (NLLONE/2 - NLHMS) 

70 . MLLATI . N L V E R E  . (a + b . NLLOI?_F/4) 
40 . NLLATI NLVERE . (a + b . M L D N E / 2 )  
(25/2) NLLATJ . NLVEFtE . NLLON-F (a $- b .  logz(NLLON_F/4)) 

inverse FFT 

r(Px - i)/Px] .20 .  NLLATE . EVERT. KLOBIE 

7.0 
12.8 

(22.1,36.8) 

(8.8 20.4) 
(2.8,18.6) 
(3.8 24.0) 

10.2 
(15.2,18.6) 
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2 
3 
4 
5 
6 
7 

8 
9 

10 
11 

copy before transpose or copy before distributed computation 
copy in transpose 
distributed computation 
sequential forward FFT 
copy before communication for complex-to-real extraction 
extract the real transform from the complex transform 

forward LT 
copy before transpose 
copy inside transpose or summation inside distributed vector sum 
forward LT preprocessing 
forward LT computation 

13 
14 
15 
16 
17 

18 
19 
20 
21 
22 
23 

inverse LT preprocessing 
inverse LT computation 
copy before transpose 
copy inside transpose 
zero truncated coefficients 

inverse FFT 
convert real transform data into complex transform data 
copy after conversion 
sequential inverse FFT 
copy before transpose or copy before distributed computation 
copy inside transpose 
distributed computation 
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sizes, 32 bit precision, and all possible aspect ratios (1x8, 2x4, 4x2, 8x1). For one-parameter 

models we use the maximum observed rates. This avoids contamination from atypical rates 

arising from inefficient memory alignments or poor cache performance. For the two-parameter 

models we use typical or median values, giving preference to rates for the smaller problem 

when there is a significant discrepancy. The intent is to better capture the behavior when 

extrapolating to larger numbers of processors. If a rate for a phase showed variation but 

could not be accurately fit with the type of two-parameter models described above, we use a 

one-parameter model. 

Interactions with the memory hierarchy are major determiners of computation and copy 

rates, and these change in a phase as the problem and algorithm parameters vary. Even one- 

parameter phase models that are highly accurate for the &processor calibration runs will be 

valid only for a range of problem and machine parameters. Consequently, there will be errors in 

the rates when extrapolating, and scalability will be a problem even in a phase model approach. 

Algebraic models that take into account memory access patterns are possible, but such models 

are unlikely to be developed by an application programmer and are not discussed here. Our 

hope is that the range of validity of the rates is large enough or that the degradation affects all 

phases in a similar enough way that the algorithm comparisons will be reasonably accurate. 

5.3. Communication model 

PerPreT requires a high-level description of the communication in a parallel program. For 

PSTSWM, communication models are required for the two parallel FFT and for the three 

parallel LT algorithms. The detailed models are given in Tab. 4. The comm(messlength) 

function in Tab. 4 returns the time needed for one communication between two processors of 

the multiprocessor. The parameter messlength is the message length in bytes. Contention 

for bandwidth and other network resources and distance in the network are ignored in these 

experiments. The models are parameterized solely by the number of messages and by the size 

of each message for a given processor. 

Note that the nature of the communication varies significantly between the different algo- 

rithms. The distributed FFT and @(log Q)-step distributed LT use a butterfly pattern in their 

communication. In the transpose algorithm, each processor sends to  every other processor, 

using an exclusive-OR ordering to avoid some contention. In the @(&)-step distributed LT, 

each processor sends and receives from only two other processors, and the two processors are 

chosen to be neighbors in the physical network if possible. The O(Q)-step distributed LT also 

attempts to overlap the communication with computation. None of these differences are taken 

into account in these models, although they could be, and this work also examines whether 

more detailed models are needed. More detailed models of the communication cost are known 
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forward 
inverse 

forward 
inverse 

[(PX - I)/PX] 1 (1 + logg,(PX)) . comm(32. NLLATS -NLVEFl_P . [NLLON9/21) 
[(PX - 1)/PX] . (1 + log,(PX)) . comm(20. NLLAT-P -NLVERS . [NLLON-P/21) 

(PX - 1) . comm (32 . NLLATS . NLVERT . NLLONS) 
(PX - 1) . corn (20 . NLLATS . NLVEXF . NLLON-P) 

Transpose FFT 

to be necessary if poor communication algorithms or protocols are used. For example, a trans- 

pose algorithm in which all processors send to processor 0, then processor 1, etc., serializes the 

communication, and the maximum per processor number of messages and message volume will 

not represent the communication cost. The goal of the algorithm comparison is to compare 

good parallel implementations, and we hope that more detailed communication models are not 

necessary. 

forward 
inverse 

forward 

inverse 

forward 
inverse 

6. Experiments 

(PY - 1) . corn (24 . NLVERS . NLSPS) 
(PY - 1) comm (24 . NLVERS . NLSPS) 
log, PY 

@(log Q)-step distributed LT 

2 .  corn (8 . 13 . NLVERS . NCSPS/Zi1) 
i = l  
- 

(PY - 1) . comm (64 . NLLATI . NLVERS . NLMMS) 
(PY - 1) . comm (40 . NLLATI . NLVERS . NLMMS) 

Transpose LT 

The performance models described in the previous section and in the appendix are meant to 

be simple enough to be generated by the application developer, yet accurate enough to be 

used when scaling problem and machine parameters and when comparing alternative parallel 

algorithms. The approach taken here has been to construct the application model from a set 

of phase models. 

In this section we begin by examining the accuracy of the individual phase models. We then 

use the models to investigate the following performance questions: 

1) What is the best logical aspect ratio to use for a given parallel algorithm and for a given 

number of processors? 

2) What is the best parallel algorithm to use for a given number of processors? 

3) How long will the application take to complete a run? 
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Two problem sizes are investigated, denoted by T42 and T85, 

MM NRI KK NLAT NLON NVER -il 
We discuss the phase model validation for algorithm TH and for three numbers of processors, 

P = 8,64,128. For the three performance questions, we discuss P = 8,16,32,64,128,256,512. 

The optimal logical aspect ratio is determined for each parallel algorithm. The optimal parallel 

algorithms are determined over all algorithms and aspect ratios. The estimation of runtimes is 

discussed in terms of the optimal parallel algorithms. 

Finally, we reexamine the models, evaluating the effectiveness and importance of the phase 

model approach in being able to answer the stated performance questions. 

6.1. Phase model validation 

The rates for the phase models were determined from data for 8-processor experiments, as 

described exlier. Table 5 indicates the maximum error in using these simple one- or two- 

parameter models for a given phase over all possible aspect ratios, where the percentage absolute 

error is defined by 

100 - Ipredicted-time - trueAimel/true-time . (4) 

Observations on the accuracy of the phase models follow. 

1) The maximum errors for the 8-processor runs used to determine the rates are small for 

the most part. There are some phases for which the simple one- and two-parameter 

models are not very accurate. These same phases also show poor accuracy for the 6 4  

and 128-processor runs. 

2) Many of the models are not very accurate when scaling to 64 and 128 processors in the 

worst case. What is not shown in this table is the range of validity across aspect ratio. 

Most of the models are quite accurate for all but the extreme aspect ratios. The depen- 

dence of the accuracy on aspect ratio can be inferred from Tab. 6 ,  where the percentage 

error in the models is given for each aspect ratio in turn. The percentage error is defined 

to be 

100 . (predicted-time - true-time)/true-time . ( 5 )  

Note that 256-processor results are included in Tab. 6 to provide additional information 

on the scalability of the models. Results for P = 16,32,512 are omitted because of space 

limitations. 
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P =  128 
35.3 
6.2 
15.0 
4.0 
42.7 
32.4 
15.1 
41.3 
21.8 
2.4 
2.5 
8.9 
63.9 
30.4 
37.5 
8.5 
18.0 
9.4 
8.5 

36.0 
44.9 

Phase 
1 
2 
4 
5 
6 
7 
9 
10 
11 
12 
13 
14 
17 
18 
19 
20 
21 
23 

sum 1-23 
FFT comm 
LT comm 

P = 8  
19.4 
4.3 
0.8 
1.0 
4.1 
2.5 
2.1 
10.9 
9.6 
3.5 
0.7 
7.1 
8.4 
3.0 
2.4 
1.7 
15.1 
3.8 
2.3 
13.5 
23.4 

P = 8  
24.2 
0.3 
0.2 
0.3 
3.5 
2.4 
11.7 
16.4 
9.5 
0.9 
4.0 
6.1 
14.8 
1.1 
6.8 
5.4 
1.2 
3.3 
3.3 
40.8 
3.2 

maximum percentage absolute error 
T42 

P = 64 
53.4 
5.3 
12.0 
11.6 
43.5 
32.1 
11.3 
42.8 
25.5 
1.4 
2.4 
9.1 

60.9 
27.6 
38.2 
8.9 
11.1 
5.2 
6.1 
16.0 
45.3 

T85 
P = 64 

53.7 
5.0 
11.2 
3.6 

43.7 
31.7 
2.2 

45.4 
23.3 
3.8 
1.7 

13.7 
36.7 
28.9 
38.3 
8.2 
7.0 
4.7 
10.6 
13.3 
31.3 

P = 128 
54.6 
4.4 
11.7 
3.7 

43.5 
31.8 
3.8 
45.7 
22.2 
3.6 
2.2 
12.9 
63.9 
28.8 
37.8 
8.8 
6.5 
4.7 
9.5 
29.0 
53.1 

Table 5: Maximum percentage absolute error in phase models over all aspect ratios for algorithm 
TH . 
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Aspect Ratio 
PX x PY 

8x1 
4x2 
2x4 
1x8 

64x1 
32x2 
16x4 
8x8 

4x16 
2x32 
1x64 

128x1 
64x2 
32x4 
16x8 
8x16 
4x32 

7 
Runtime 
(seconds) 

92.08 
90.84 
90.67 
83.61 
44.07 
22.98 
12.46 
12.80 
13.81 
16.75 

46.91 
23.43 
12.55 
7.12 
7.42 
8.97 

- 

2x64 
256x1 
128x2 
64x4 
32x8 

16x16 
8x32 
4x64 

2x128 
1x256 

T85 
Runtime 
(seconds) 

481.83 
477.54 
481.30 
429.89 
226.37 
113.80 
60.2 1 
61.38 
66.18 
76.71 
95.23 
227.18 
112.33 
58.31 
31.84 
34.20 
39.92 

- 
25.83 
13.44 
7.54 
4.50 
5.18 
- 
- 
- 

% error 
in model 

-4.3 
-3.5 
-3.2 
1.5 
-0.9 
1.2 
1.2 
1.5 
0.6 
-1.0 
-5.7 
-0.7 
1.8 
1.8 
0.5 
-1.1 
-3.7 

2 
% error 

in model 
-4.4 
-3.5 
-2.0 
-2.8 
0.6 
-0.6 
-1.7 
-3.3 
-3.1 
-6.2 

-0.8 
0.2 
-2.3 
-5.4 
-5.5 
-9.9 

- 

- 
- 
-1.1 
-2.8 
-7.5 
-11.4 
-16.3 
- 
- 
- 

51.89 
240.45 
116.85 
59.67 
32.51 
19.19 
2 1-90 
28.77 
- 
- 

-10.4 
-15.2 

Table 6: Runtime and model error for algorithm TH. 
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3) In general, the most inaccurate phase models are for those phases taking the least amount 

of time. This is to be expected given the greater degree of sensitivity to overhead and 

unpredictable memory access costs in short phases. This result is not directly observable 

from Tab. 5, but it can be inferred from the relatively good accuracy shown in the sum of 

the phase computation models (“sum 1-23”) and in the total time predictions in Tab. 6 .  

4) Communication costs are not simple to separate from computation costs. The arrival 

of messages while a process is in a computation phase causes an overestimate of the 

computation cost and an underestimate of the communication cost. For completeness, we 

have included what data we have on communication costs and estimated the error in the 

models, but the accuracy of the communication models is best inferred from the accuracy 

of the total time predictions in Tab. 6. 

5) While algorithm TI1 is not atypical, the accuracy of the models for the other algorithms 

varies from that shown here. The appendix contains results corrresponding to Tab. 6 for 

the other algorithms. 

In summary, the individual phases are not always well modeled by using these simple per- 

formance models, but the phase model approach appears to be quite accurate when modeling 

the entire application. 

6.2. Optimal aspect ratio 

The first performance question of interest for PSTSWM is how to allocate processors among the 

different parallel transforms to minimize execution time, i.e., for a given number of processors, 

what logical aspect ratio should be used. The relative accuracy of the execution time predictions 

is important here, not the absolute accuracy. Table 7 describes the true and predicted optimum 

for different numbers of processors when they differ, and the percentage loss from using the 

model results. The loss is measured in the following way. Let PRED represent the predicted 

optimal aspect ratio. Let OPT represent the true optimal aspect ratio. The percentage loss is 

defined as 

100 . (PREDfrueAirne - (3PTdrzle_tinze)/(OPT_trzle_time) . (6) 

Only 17 of the 84 model predictions are incorrect, and only 4 of these result in errors in 

runtime of more than 5%. Performance on the  Paragon is very consistent, but there is some 

small variation between runs. The 7 cases in which the “error” is less than 1% should probably 

be considered correct 

What is not indicated in this table i s  how important it is to choose a good aspect ratio. 

The worst case aspect ratios are as much as ten times worse than the best case, primarily 
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Processors 
DH (3 errors) 

32 
512 

32 
512 

DR (2 errors) 

T42 T85 
model experimental ?6 error in model experimental % error in 
results results runtime results results runtime 

I 4x8 2x16 0.5 4x8 4x8 
16x32 32x16 8.5 16x32 32x16 0.2 

1x32 4x8 1.2 1x32 1x32 
16x32 32x16 16.8 32x16 32x16 - 

- 

~~ 

Table 7: Error in choosing optimal aspect ratio from model results instead of experimentally. 

32 11 16x2 I 8x4 

reflecting load imbalance. Tables 18-23 in the appendix contain more details on the sensitivity 

of performance to aspect ratio. 

Determining a good logical aspect ratio is important when implementing a parallel strategy. 

A parallel code could incorporate the flexibility to change at least some of these parameters 

at compile-time or runtime, in which case PerPreT simply makes this more convenient to 

determine. This convenience should not be underestimated. Determining the optimal aspect 

ratio experimentally requires access to the same number of processors as will be used in a 

production run and numerous, possibly expensive, experiments. 

0.2 11 8x4 I 16x2 I 0.3 

6.3. Optimal parallel algorithm 

Determining the optimal parallel algorithm experimentally requires developing, tuning, and 

evaluating multiple parallel implementations. This is much more time consuming than deter- 

mining the optimal aspect ratio experimentally, and there is much to be gained from using 

performance models to predict the optimal parallel algorithm. As before, relative accuracy in 

the predicted execution times is what is important. Table 8 indicates the true and predicted 

optimal parallel algorithm for different numbers of processors, and the percentage loss from 

using the model-identified algorithm, measured as in ( 6 ) .  The optimal aspect ratio was found 

for each parallel algorithm before being compared with the other parallel algorithms. The 

16 1x16 4x4 
32 16x2 8x4 
64 16x4 16x4 

16 16x1 16x1 
32 1x32 4x8 
64 16x4 8x8 

128 16x8 8x16 

TT (6 errors) 

- 5.4 1x16 1x16 
2.3 8x4 4x8 0.2 
- 16x4 8x8 0.3 

- 16x1 1x16 5.6 
4.4 1x32 1x32 - 
2.6 16x4 8x8 3.4 
0.9 16x8 8x16 2.5 
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experimental 
optimum 
DR 1x8 
DR 1x16 
TR 4x8 
TR 8x8 
TT 8x16 
TT 16x16 
TT 16x32 

Processors 
8 

16 
32 
64 

128 
256 
512 

% diff. in 
runtime 

6.2 
1.8 
1.5 
0.3 
2.5 
- 
I 

T42 
model 1 experimental 

optimum optimum A 
T R  8x4 TR 8x4 

% diff. in 
runtime 

model 
optimum 
DT 1x8 
DT 1x16 
TR 16x2 
TR 16x4 
TT 16x8 
TT 16x16 
TT 16x32 

Table 8: Error in choosing optimal algorithm from model results instead of experimentally. 

model results use the model-determined optimal aspect ratios. The empirical results use the 

experimentally-determined optimal aspect ratios. 

The performance models correctly identify the optimal algorithm and aspect ratio in seven 

out of fourteen cases, and the correct algorithm (if not the optimal aspect ratio) in ten of the 

cases. The error in misidentifying the optimal algorithm was acceptable, especially for the 

‘(scaling’’ examples, P > 8. The performance sensitivity of choosing the wrong algorithm (but 

with an optimum aspect ratio) is not as extreme as when choosing the aspect ratio, but worst 

case errors range as high as 85%. Note that when considering a larger sampling of interesting 

problem sizes, all of the parallel algorithms are optimal in some cases. It is not possible to 

eliminate any of the parallel algorithms (I priori. 

6.4. Runtime predictions 

When allocating resources, it is important to know how long a parallel job will take to run on a 

given number of processors. For example, runtime information is often required when submit- 

ting batch requests. This type of prediction requires a certain degree of absolute accuracy, but 

the degree needed is not great. (However, accurate predictions of runtime can be extremely 

important in real-time environments.) 

Table 9 indicates how accurately the models predict the runtime for the model-determined 

“optimal” parallel algorithms (to pick particular examples). The percentage error is measured 

as in (5). With possibly one exception, the accuracy of these predictions is adequate for the 

determination of resource requirements. Note that similar accuracies hold for predicted speedup 

and parallel efficiency. The data indicate that model accuracy for problem size T42 is not scaling 

well beyond 256 processors, at least for algorithm TH. However, the practical limit for T42 is 

512 processors, and this degradation in accuracy is not significant for this application code. 
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TR 16x4 
TH 16x8 

Processors 
8 

16 
32 
64 

128 
256 
512 

T42 
predicted 
runtime 

79.8 
40.9 
23.0 
12.2 
6.7 
4.0 
2.6 

% error in II 
prediction algorithm -A 

DT 1x16 
TR 16x2 
TR 16x4 
TT 16x8 

-11.1 TT 16x16 
-27.8 TT 16x32 

T85 
predicted 
runtime 

426.6 
206.9 
118.6 
60.6 
31.6 
16.8 
9.7 

Table 9: Error in predicting runtime (seconds). 

model 
optimum 
DT 1x8 

DT 1x16 
DT 2x16 
DT 4x16 
TT 16x8 
TT 16x16 
TR 16x32 

T42 
experimental 

optimum 
DR 1x8 

DT 1x16 
TR 8x4 
T R  16x4 
T R  16x8 
TT 16x16 
TH 16x32 

% diff. in 
runtime 

6.6 

17.3 
22.3 
2.7 

45.1 

- 

- 

model 
optimum 
DT 1x8 
DT 1x16 
DT 2x16 
TT 16x4 
TT 16x8 

' TT 16x16 
TT 16x32 

% error in 
prediction 

-2.8 
-8.4 
0.7 
4.3 
4.5 
1.8 

-5.8 

T85 
experiment a1 

optimum 
DR 1x8 
DR 1x16 
TR 4x8 
TR 8x8 
TT 8x16 
TT 16x16 
TT 16x32 

% diff. in 
runtime 

6.3 
1.8 
10.9 
7.5 
2.5 
- 
- 

Table 10: Error in choosing optimal algorithm from complexity analysis instead of experimen- 
tally. 

6.5. Model accuracy requirements 

The previous results indicate that the accuracy of our phase model approach is adequate for 

algorithm tuning and comparison for this case study. We next discuss whether a simpler model 

might also suffice. 

There are numerous ways to simplify the current model. Here we consider only a few obvious 

alternatives. First, we choose the optimal algorithm on the basis of arithmetic complexity alone, 

ignoring copy phases, communication costs, and phasedependent rates. (Including copy and 

communication complexity would require some sort of rate estimation to weight the different 

components of the model.) 

Table 10 indicates the true and predicted optimal parallel algorithms using this simplified 

model, and the percentage loss from using the model-identified algorithm. These predictions 

are not as good as those from using a phase model. Depending on the application, the size of 

these errors may or may not be acceptable. But, since the error in the prediction is not known 

in practice, the wide and unpredictable variation in the error is worrisome. 

We can not predict runtimes from the complexity analysis alone. The next models we 
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% error in 
prediction 

-6.3 
-21.1 
-27.4 
-23.0 
-32.0 
-56.1 

consider use the sustained computation rate for an 8-processor run for a given parallel algorithm 

to weight the corresponding arithmetic complexity model. Unlike for the phase models, a 

separate rate was determined for each problem size. Table 11 indicates how accurately these 

models predict the runtime for the above model-determined “optimal” parallel algorithms. 

For this type of model to be accurate requires that either copy and communication costs are 

negligible or they scale similarly with the computation costs, and that the rates are insensitive 

to scaling. It is clear from Tab. 11 that these conditions do not hold for PSTSWM. 

algorithm 
DT 1x16 
DT 2x16 
TT 16x4 
TT 16x8 
TT 16x16 
TT 16x32 

Processors 
16 
32 
64 

128 
256 
512 

predicted 
runtime 

205.3 
103.3 
50.6 
25.7 
13.1 
6.9 

algorithm 
DT 1x16 
DT 2x16 
DT 4x16 
TT 16x8 
TT 16x16 
TR 16x32 

% error in 
prediction 

-9.1 
-20.9 
-18.6 
-15.1 
-20.8 
-33.1 

T42 
predicted 
runtime 

41.2 
20.8 
10.6 
5.5 
3.0 
1.6 

Table 11: Error in predicting runtime (seconds) using compledy-based model. 

Our final simplified model includes terms for computation, copy, and communication costs, 

but does not take into account phase-specific rates. Instead we use average copy and compu- 

tation rates determined from the 8-processor runs. As before, different rates are used for each 

parallel algorithm and problem size. Table 12 indicates how accurately this type of single-phase 

model predicts the runtime for the phase model “optimal” parallel algorithms (to allow direct 

comparison with the phase model results). With the exception of predictions for T42 for large 

numbers of processors, the single-phase model is as accurate a predictor of runtime as is the 

(multiple-) phase model. So the question arises whether a phase model is required as long as 

the copy, computation, and communication costs are included in the model. 

Processors 
8 

16 
32 
64 

128 
256 
512 

algorithm 
DR 1x8 
DT 1x16 
T R  8x4 
TR 16x4 
TH 16x8 
TH 16x16 
TH 16x32 

T42 
predicted 
runtime 

86.8 
43.9 
23.3 
12.1 
6.6 
3.8 
2.4 

% error in 
prediction 

7.0 
0.2 
3.7 
0.9 
-7.2 
-15.5 
-32.4 

algorithm 
DT 1x8 
DT 1x16 
TR 16x2 
TR 16x4 
TT 16x8 
TT 16x16 
TT 16x32 

T85 
predicted 
runtime 

445.4 
210.9 
118.8 
60.3 
32.1 
16.9 
9.7 

% error in 
prediction 

1.5 
-6.6 
-0.6 
3.8 
6.0 
2.2 
-5.8 

Table 12: Error in predicting runtime (seconds) using single-phase model. 

A phase model does not appear to be required for accurate performance prediction for 
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PSTSWM. However, we found the act of constructing the phase model to be necessary. The 

error prone aspect of the phase model approach was in the generation of the phase model 

expressions. These same expressions are needed in a single-phase model (or in a complexity 

analysis). The additional step of calculating rates and validating the individual phase models 

also validates the expressions. Modeling phases can also identify performance “problems”, 

for example, code that is overly sensitive to aspect ratio due to  compiler peculiarities. Using 

average rates and a single-phase model removes the necessity of detailed profiling to determine 

individual phase model rates, but makes it more difficult to validate the model. 

7. Conclusions 

This case study demonstrates that relatively simple algebraic models can be used to construct 

scalable performance models for use in algorithm tuning and comparison. These models can 

be difficult to generate and validate, but the phase model approach makes it feasible to do 

so. In addition, constructing and modifying models and generating predictions were easy using 

PerPreT. Note that our modeling “discipline”, used to limit the amount of work spent in 

tuning the models, is somewhat artificial. Some restrictions are necessary for the study to 

be- meaningful, but there may be better ways of determining phase model rates than simply 

running the full application for the target problem size on a small number of processors. 

A phase model approach was useful in generating a performance model, but it may not 

be necessary when ”porting” the model to a new platform. As described earlier, single rates 

for computation, copy, and communication phases may be sufficient when using the model for 

predictions. In future work, we will examine this issue by repeating our evahation studies on 

the IBM SP2 and on the Cray Research T3D or T3E. The SP2 will be a particularly interesting 

platform; communication costs are relatively high, and a simple communication model may not 

be adequate. 

It is clear that additional tools would be useful in generating performance models. For 

example, interactive tools to aid the application expert in generating the models from the 

source code (as in [22]), in devising experiments to determine rates and to validate models, and 

in calling PerPreT to make predictions would have made this process much simpler. We do 

not currently forsee tools that can generate performance models for complete application codes 

automatically, except possibly in high-level language-specific environments as proposed in [ti] 

and [20]. 
This study did not address the question of how to generate the models before generating 

code. While our algebraic models were sufficiently accurate, a detailed complexity analysis 

is a requirement for an accurate comparison. Many of the costs, for example, copy phases 

and rates, may not be obvious until the design and implementation are fairly advanced. One 
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possible approach is to generate a hierarchy of models, at each step eliminating obviously bad 

parallel algorithms. The performance models of the remaining candidates would then be refined 

(possibly simultaneously generating the code). This is a big job in itself, and a sophisticated 

prototyping environment would be very useful. We hope that our results on the advantages 

and limitations of algebraic performance models will be useful in the design of such tools. 
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Appendix 

I N L L O N S  I 

I N L V E R J ’  I NVER 

N L V E R J  NVER 

NLSPS I N C S P S  

NLON 

I 

N C S P S  N C S P S  
T 

N C S P S  
1 I D R , D H , D T  1 

M M + 1  where 9 = px 

where c9 = w. - I&- MM 1 I 
Table 13: Domain Decomposition Parameters 
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2 
3 
5 
6 
7 

9 
10 
I 1 

[(PX - l)/PX] . 3 2 .  PLLATP . BLVER9. (a + b .  ULL0H.P) (4.5,23.1) 
[(PX- l)/PX] *32-ELLATP.BLVERE*(a.PX+ b.ELLOEE) (17.7,21.6) 
20 . BLLATE + HLVERE . ELLOHE . (a + b.  logz (PLLOHE/4)) (3.8,24.0) 
64 . BLLATE BLVERE . (a + b . BLLOHE/I) (4.0,15.2) 
144. lLLATE . ELVER3 - (a + b . ILLOPE/4) (10.4,19.8) 

forward LT 
(PY - 1)-6-ELVERS-BCSPS/PY 4.4 
61 . llLVE3S . BLfinS . BLLATS 
(14 . ITLLATS - I )  . news . IILVERS 

10.0 
15.1 

inverse LT 
13 I 17.ECSPS - BLVEBS 7.0 I 12.8 14 (14. BCSPS 4 10 HLHHS) . BLLATS . BLVEBS 

18 
19 
20 
21 
22 

17 1 &I. BLLATE . BLVERE.  (a’+ b 1 (BLLOES/2 - PLWS) I (22.1,36.8) 
inverse FFT 

70 . ELLATE. ELVER3 . (a + b . ELLOBE/4) 
40 - ELLATE. ELVEBE . (a + b . EUOHE/2) 
(25/2) -PLLATE. SLVERE . ELLOBS. (a + b . log2(ELLOBE/4)) 

[(PX - l)/PX] . 2 0 .  ELLATE. HLLOBP. (a. Px + b . ELVEB9) 

(8.8,20.4) 
(2.8,18.6) 
(3.8,24.0) 

10.2 
(15.2,18.6) 

r(Px - i) /Px1.20. IBLLATE . PLVH~E - BLLOBS 

1 I 12 - HLLOHP . IILLATS . BLVERP 

2 
3 
5 
6 
7 

8 
9 

forward FFT 
[(Px - i) /Pxl . 3 2 .  HLLATP . BLVERP . (a + b . ELLOP-P) 
[(PX - l)/PXl .32  .ULLATP -ULVfiRE * (a. PX+ b * BLLOBE) 
20. ELLATE. ELVER3 . ELLOEE. (a f b . log2 (ELLOEE/4)) 
64 - BLLATE . BLVERE . (a + b . BLLOll-F/4) 
1 4 4 .  ITLLATE . ELVERS. (a + b. IpLLOIIE/4) 

[(PY - l)/PY] .32 . 3LLAT-F. BLVERE . ELLOIE 
[(PY - l)/PY] . f54 - ELVERS * HLHHS . (a. PY + b . BLLATS) 

forward LT 

10 61 ELVERS . IIMHS * BLLATS 
11 14 EUATS . ELVERS * PCSPS 

l/b) 
4.8 

(4.5,23.1) 
(17.7,21.6) 
(3.8,24.0) 
(4.0,15.2) 
(10.4,19.8) 

6.9 
(12.2,20.6) 
10.0 
15.9 

13 17 - ncsps .ELVERS 
14 
15 
16 
17 

18 
1 9  
20 
21 
22 

(14. BCSPS -1- i o .  mLnns) I ELLATS . ELVERS 
[(PY - 1)/PY1 .40. ELLATS . ILVERS . (a + b . H L H I S )  
[(PY - 1)/PY1 . 40 .  E L L A 1 3  - XLVERS * (a * PY + b * (HH + 1)) 
40 .  ELLATE . IILV6Rf. (a + b. (ELLOHE/2 - HM - 1)) 

inverse FFT 
70. PLLATS. ILyIiBE. (a + b . BLLOH-F/41 
40.  ELLATE. ELVERE . (a f b . SLLOBE/2) 
(25/2). ELLATE. BLVEBE . BLLOEE . (a + b . log2(lILLOEE/4)) 
r p x  - i)/pxI . 2 0 .  UATE ELBERE - HLLOEE 
[(PX - 1)JPXl .20. ELLATE * I U O B J ’ .  (a - PX + b * BLVERS) 

7.0 
12.8 
(6.5,21.9) 
(7.4,21.6) 
(22.1,X.S) 

(8.8,20.4) 
(2.8,18.6) 
(3.8,24.0) 
10.2 
(15.2,18.6) 
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11 I (14. ELLATS - 1) . UCSPS . ELVERS 

Phase I Model Rate 

15.1 

physical domain computation 
1 I 12  . ELLOllP . BLLATP . llLVERP 

2 [(PX - 1)/PX1 .64 .  BLLATE . ELVERE . (a + b . IILLDEI) 
4 
5 20. ULLATI . ELVERE . B L L O I I  . (a + b . logz (BLLOBE/4)) 
6 6 4 .  BLLATI  . ELVERE . (a + b. ELLDIII/4) 
7 144. ELLATE. ELBERE. (a + b . 1 L L O E I / 4 )  

8 [(PY - 1)/PY1 . 6 4 .  ELLATE. ULVERE . (a + b . ELHHS) 
9 [(PY - l)/PY] . 6 4 -  ELVERS. I L H H S  . (a- PY + b . ELLATS) 

10 61 ELVERS . ULHHS * ULLATS 
11 14 . ELLATS . BLVERS . UCSPS 

20. ELLATI  ELVERS. BLLOBE . log2 (PX) 

forward LT 

1 4.8 

(8.2,22.3) 
7.5 
(3.8,24.0) 
(4.0,15.2) 
(10.4,19.8) 

(4.2,lO.O) 
(12.2,20.6) 
10.5 
15.1 

forward FFT 
[(PX - l)/PX] .64 .  E L L A T I .  ILVERE . (a + b . ULLOEE) 
20 .  ELLATE * ELVERE . ULLOEE . log2 (PX) 
20 . ELLATE. ELVERI . PLLOEE . (a + b . logz (ULLOBE/4)) 
64 . ULLATE . ELVERE . (a + b ULLOBE/4) 

13 17. BCSPS . ULVERS 
14 
15 

1 7  

(14 * ECSPS + 10. ULIHS)  * ULLATS . ELVERS 
[(PY - l)/PY] . 40 .  ELLATS . PLVERS . (a + b . I L H H S )  

40. ULLATE . ELVERE . (a + b . (ELLOEE/2 - ELHHS)) 
16 [(PY- 1)/PY1 -4O*ELLATE.IL?lKS.(a-PY+ b - I L V E R S )  

144 .  I L L A T I  . ELVERS .'(a + b . B L L O E i / 4 )  
forward LT 

7.0 
12.8 
(6.5,21.9) 

(22.1,36.8) 
(8.0,21.0) 

(PY - 1) .6. ELVERS . FCSPS/PY 
1; I 61 . ELVERS 1 ELHHS . ELLATS 

(8.2,22.3) 
7.5 
(3.8,24.0) 
(4.0,15.2) 
(10.4,19.8) 

I E 1  

12 

13 
14 
17 

18 
19 
20 
21 
23  

13. E L S C S  . ELVERS 
inverse LT 

17. ECSPS . ELVERS 
(14. ICSPS + 10 . ULHHS) . ELLATS . ELVERS 
40 .  E L L A T I .  ULVERI . (a + b . (ELLOIS/:! - PLI4nS) 

inverse FFI' 
70. BLLATE . ELVERE (a + b . ELLOEE/4) 
40. E L L A T I .  HLVERI . (a + b . I L L O E E / 2 )  
(25/2). BLLATI . ELVERE . IiLLOBI . (a + b . log2(ELLOP-F/4)) 
[(PX - 1)/PX1 .40 .  I L L A T E .  ELVERS. (a + b * ELLOBE) 
(25/2) . ELLATE. ULVERE . I L L O B I  . log2 (PX) 

11.5 

7.0 
12.8 
(22.1,36.8) 

(8.8,20.4) 
(2.8,18.6) 
(3.8,24.0) 
(6.0,19.5) 
8.8 

Table 16: Computational models and MFlop/s or MByte/s rates for algorithms DR and DH 

18 
19 
20 
21 
23  

70. ELLATS ' ULVERE . (a -t b. ELLOEE/4) 
40. ELLATT. HLVERE . (a + b . BLLOEE/2) 
(25/2).  I L L A T E .  I L V E R E -  E L L 0 1 3  . (a + b . logz(HLLOEI/4) )  
[(Px - i)/px] .40. ELLATE. IPLVERI . (a + b . IILLOBE) 
(25/2) . ULLATE . ILVERE . PLLOEE . log2 (PX) 

(8.8,20.4) 
(2.8,18.6) 
(3.8,24.0) 
(6.0,19.5) 
8.8 

Table 17: Computational models and MFlop/s or MByte/s rates for algorithm DT 
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! 
% e m r  

in model 
-2.0 
-1.8 
-1.1 
-2.6 

4.7 
-1.4 
-3.2 
-3.6 
-6.3 

I 

- 
- 
- 
3.4 
-4.1 
-4.5 
-7.4 
I 

-2.0 
-9.8 

-15.9 

83.46 
64x1 

16.24 

T85 
Runtime % errur 
(seconds) in model 

543.54 1.4 
504.52 1.7 
480.68 1.5 
430.03 1.4 
103.96 9.0 
87.66 3.0 
77.59 2.0 
72.37 2.0 
72.26 1.6 
78.48 0.6 
95.22 -5.7 

53.43 7.2 
45.63 1.1 
41.72 -0.2 
39.74 0.0 
42.43 -1.0 
54.02 -7.9 

- - 

- 
- 

28.88 1.6 
25.10 -4.0 
24.01 -7.4 
24.91 -8.7 
31.28 -15.7 
- 
- 

128x1 

16x8 9.73 

2x64 
256x1 
128x2 

8x16 11 
4x32 - - 

I 

64x4 
32x8 

16x16 
8x32 
4x64 

2x128 
1x256 

- 
6.17 
5.82 
6.26 - 
- 
- 

Aspect Ratio 
PX x PY 

8x1 
4x2 
2x4 

Table 18: Runtime and model error for algorithm DH. 

T42 T85 
Runtime % error Runtime % error 
(seconds) in model (seconds) in model 

116.14 -1 9 542.89 1 6  
103.71 -1.9 495.99 3.2 
95.61 -1.4 468.99 3.5 

1x8 
64x1 
32x2 

81.13 -1.7 412.94 4.1 - - 103.99 9.0 
21.22 1.4 86.86 3.8 

-7.2 76.63 2.8 
-10.3 72.55 0.8 
-11.6 
-12.3 

1x64 
128x1 
64x2 
32x4 
16x8 
8x16 
4x32 
2x64 

256x1 
128x2 
64x4 
32x8 

16x16 
8x32 
4x64 

2x128 
1x256 

84.04 0.4 

- 52.67 8.5 
11 93 -6.5 45.34 1.3 
1145 -18.5 41.43 -1 4 
10.83 -18.5 40.81 -4.0 
11.71 -19.2 42.97 -4.5 
- - 50.83 -5.7 

- - 
- - - - 
- 

- - - - - 29.60 -1.2 
7.78 -21.8 26.67 -10.1 
7.63 -28.2 25.81 -14.4 
8.26 -29.2 26.51 -14.7 - 31.61 -16.5 
- - - - 
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1x8 
64x1 
32x2 

102.79 -1.8 
86.50 -5.5 

21.78 10.5 
- - 

90.12 
78.83 
72.20 
69.09 
97.36 

151.52 

54.41 
44.50 
39.43 
36.66 
50.55 
81.43 
143.77 

- 

- 
_. 

28.11 
23.72 
21.69 
27.19 
43.52 
78.47 
- 

6.6 
4.5 
0.9 

-4.9 
-7.7 
-8.5 

13.8 
7.9 
3.9 
-2.1 
-4.9 
-7.6 
-8.4 

- 

10.3 
1 .o 

-5.9 
-3.5 
-7.3 

-10.0 

544.60 
537.19 
507.60 -0.6 

16x4 
8x8 

4x16 
2x32 
1x64 

128x1 
64x2 
32x4 
16x8 
8x16 
4x32 
2x64 

1x128 
256x1 
128x2 
64x4 
32x8 

16x16 
8x32 
4x64 

2x 128 
1x256 

18.08 3.5 
16.12 -0.2 
14.67 -2.5 
19.09 -4.8 
28.26 -7.1 
- - 
- - 

11.27 8.3 
9.60 -0.3 
8.69 -3.4 
10.79 -4.4 
16.28 -4.7 
- - 
- 
- 
- 

6.31 0.5 
5.40 -4.3 
6.80 -7.4 
9.56 -3.7 
- 
- 

Table 20: Runtime and model error for algorithm DT. 

! 
% error 

in model 
-4.4 
-3.5 
-2.0 
-2.8 
0.6 
-0.6 
-1.7 
-3.3 
-3.1 
-6.2 

-0.8 
0.2 
-2.3 
-5.4 
-5.5 
-9.85 

- 

- 

-1.1 
-2.8 
-7.5 
-11.4 
-16.3 

Aspect Ratio 
PX x PY 

8 x  1 
4x2 
2x4 
1x8 

64x1 
32x2 
16x4 
8x8 

4x16 
2x32 
1x64 

128x1 
64x2 
32x4 
16x8 
8x16 
4x32 
2x64 

256x1 
128x2 
64x4 
32x8 

16x16 
8x32 
4x64 

2x128 
1x256 

-- 
T 

Runtime 
(seconds) 

481.83 
477.54 
481.30 
429.89 
226.37 
113.80 
60.21 
61.38 
66.18 
76.71 
95.23 
227.18 
112.33 
58.31 
31.84 
34.20 
39.92 
5 1.89 

240.45 
116.85 
59.67 
32.51 
19.19 
21.90 
28.77 
- 
- 

I 1 
Runtime 
(seconds) 

92.08 
90.84 
90.67 
83.61 
44.07 
22.98 
12.46 
12.80 
13.81 
16 75 

46.91 
23.43 
12.55 
7.12 
7.42 
8.97 

- 

- 
I 

I 25.83 
13.44 
7.54 

~ 4.50 
l 5.18 
l -  

- 
- 

> 
% error 

in model 
-4.3 
-3.5 
-3.2 
1.5 

-0.9 
1.2 
1.2 
1.5 
0.6 
-1.0 
-5.7 
-0.7 
1.8 
1.8 
0.5 
-1.1 
-3.7 
-7.3 
-3.6 
-0.6 
-0.3 
-3.2 
-8.5 

-10.4 
-15.2 

Table 21: Runtime and model error for algorithm TH. 
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1x8 
64x1 
32x2 

Aspect Ratio Runtime 
PX x PY (seconds) 

8x1 I 92.10 

80.98 
44.07 
22.29 

-5.5 

-0.2 
- 

128x1 
64x2 
32x4 

8x16 

70.23 4.3 
83.85 0.7 
227.18 -0.6 

11.99 
12.16 
13.40 
16.54 

46.64 
22.79 
12.14 
6.96 
7.44 
9.11 

- 

1x8 
64x1 
32x2 

256x1 

16x16 
8x32 5.60 
4x64 

2x128 
1x256 

91.17 -2.4 
44.05 -2.7 
24.39 2.9 

482.11 

2x32 
1x64 

128x1 

-2.1 
-0.7 11 476.67 

14.44 2.9 
19.05 13.2 
46.65 -1.0 

-1.4 11 413.16 I 4.1 
0.6 11 226.36 I -0.9 

64x2 
32x4 
16x8 
8x16 
4x32 

2.2 113.91 0.9 
1.7 58.10 4.3 
1.2 

-0.9 

24.80 
12.92 
7.15 
7.09 
8.06 

2.8 
0.5 
-3.0 
-4.1 
-7.3 
- 

1.9 
1.1 

-2.8 
-7.0 

-12.4 

112.51 
56.64 
29.79 
31.23 
36.27 
46.81 -1.1 
240.35 -3.5 
116.63 -0.6 
57.38 3.0 
29.78 4.7 
16.95 
19.75 -1.1 
25.73 -5.4 

Table 22: Runtime and model error for algorithm TR. 

102.03 -2.8 
-1.4 

% jl 
4x16 12.74 

2.5 
6.2 
8.0 

2x64 
1x128 
256x1 I1 
128x2 
64x4 
32x8 

16x16 
8x32 
4x64 

2x128 
1x256 

11.25 - 
- 

27.38 
13.88 
7.57 
4.33 
5.00 
6.91 - 
- 

5.5 
4.8 
1.4 
4.7 
1.3 
11.0 - 

6.1 
7.0 
2.0 
1.3 
-2.9 
4.9 

1 
Runtime 
(seconds) 

482.12 
528.42 
523.20 
453.04 
228.49 
126.44 
62.14 
60.08 
60.17 
62.82 
65.26 
229.02 
124.70 
59.93 
30.28 
29.54 
30.34 
34.22 
53.47 
242.19 
130.04 
61.80 
30.61 
16.53 
16.83 
18.93 
28.59 - 

I 

% error 
in model 

-8.6 
-5.3 
-3.6 
1.5 

-10.8 
-6.5 
-1.0 
5.8 
8.2 
5.9 
-1.0 
-10.4 
-4.9 
0.8 
4.5 
11.2 
12.3 
6.7 
17.2 

-12.7 
-5.8 
-0.7 
3.3 
1.6 
5.5 
3.3 
21.0 

Table 23: Runtime and model error for algorithm TT. 
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